Author(s):
Govaerts, Yves; Rüthrich, Frank; John, Viju; Quast, Ralf
Publication title: Remote Sensing
2018
| Volume: 10 | Issue: 12
2018
Abstract:
Meteosat First-Generation satellites have acquired more than 30 years of observations that could potentially be used for the generation of a Climate D… Meteosat First-Generation satellites have acquired more than 30 years of observations that could potentially be used for the generation of a Climate Data Record. The availability of harmonized and accurate a Fundamental Climate Data Record is a prerequisite to such generation. Meteosat Visible and Infrared Imager radiometers suffer from inaccurate pre-launch spectral function characterization and spectral ageing constitutes a serious limitation to achieve such prerequisite. A new method was developed for the retrieval of the pre-launch instrument spectral function and its ageing. This recovery method relies on accurately simulated top-of-atmosphere spectral radiances matching observed digital count values. This paper describes how these spectral radiances are simulated over pseudo-invariant targets such as open ocean, deep convective clouds and bright desert surface. The radiative properties of these targets are described with a limited number of parameters of known uncertainty. Typically, a single top-of-atmosphere radiance spectrum can be simulated with an estimated uncertainty of about 5%. The independent evaluation of the simulated radiance accuracy is also addressed in this paper. It includes two aspects: the comparison with narrow-band well-calibrated radiometers and a spectral consistency analysis using SEVIRI/HRVIS band on board Meteosat Second Generation which was accurately characterized pre-launch. On average, the accuracy of these simulated spectral radiances is estimated to be about ±2%. more
Author(s):
Naaouf, N.; Torma, C.Z.
Publication title: Earth Systems and Environment
2023
| Volume: 7 | Issue: 3
2023
Abstract:
Regional climate models are widely used to assess current and future impacts of climate change. In this study, we evaluate the performance of regional… Regional climate models are widely used to assess current and future impacts of climate change. In this study, we evaluate the performance of regional climate models from the Coordinated Regional Climate Downscaling Experiment programme integrated over the following three CORDEX domains: AFR, MNA and WAS. Four meteorological variables (temperature, precipitation, solar radiation and cloud cover) were evaluated over Syria at a grid spacing of 0.44°. The performance of five models in simulating the present climate characteristics (1989–2008) is evaluated with respect to the observations: CRU, ERA5 reanalysis and SARA and CLARA satellite data. We find that the mini-ensemble captures well the general spatial patterns and annual cycles of the selected variables. Anotheraim of this study was to assess the expected change of the mentioned four climate variables over Syria under the moderate emission scenario (RCP4.5) and the high emission scenario (RCP8.5) in the near future (2031–2050) and in the far future (2080–2099) with respect to the present climate (1989–2008). The simulations show a decreasing trend in cloud cover (between 6% and 10%) and precipitation (up to 9%) by mid and late century, regardless of the forcing scenarios. The simulations show a pronounced warming over Syria, which is expected to reach 6 °C by the end of the twenty-first century following the high greenhouse gas concentration scenario (RCP8.5). Furthermore, such an increase, combined with a decrease in precipitation, will shift Syria’s climate towards a more arid one. © 2023, The Author(s). more
Author(s):
Quast, Ralf; Giering, Ralf; Govaerts, Yves; Rüthrich, Frank; Roebeling, Rob
Publication title: Remote Sensing
2019
| Volume: 11 | Issue: 5
2019
Abstract:
How can the in-flight spectral response functions of a series of decades-old broad band radiometers in Space be retrieved post-flight? This question i… How can the in-flight spectral response functions of a series of decades-old broad band radiometers in Space be retrieved post-flight? This question is the key to developing Climate Data Records from the Meteosat Visible and Infrared Imager on board the Meteosat First Generation (MFG) of geostationary satellites, which acquired Earth radiance images in the Visible (VIS) broad band from 1977 to 2017. This article presents a new metrologically sound method for retrieving the VIS spectral response from matchups of pseudo-invariant calibration site (PICS) pixels with datasets of simulated top-of-atmosphere spectral radiance used as reference. Calibration sites include bright desert, open ocean and deep convective cloud targets. The absolute instrument spectral response function is decomposed into generalised Bernstein basis polynomials and a degradation function that is based on plain physical considerations and able to represent typical chromatic ageing characteristics. Retrieval uncertainties are specified in terms of an error covariance matrix, which is projected from model parameter space into the spectral response function domain and range. The retrieval method considers target type-specific biases due to errors in, e.g., the selection of PICS target pixels and the spectral radiance simulation explicitly. It has been tested with artificial and well-comprehended observational data from the Spinning Enhanced Visible and Infrared Imager on-board Meteosat Second Generation and has retrieved meaningful results for all MFG satellites apart from Meteosat-1, which was not available for analysis. more
Author(s):
Rüthrich, Frank; John, Viju O.; Roebeling, Rob A.; Quast, Ralf; Govaerts, Yves; Woolliams, Emma R.; Schulz, Jörg
Publication title: Remote Sensing
2019
| Volume: 11 | Issue: 10
2019
Abstract:
This paper presents a new Fundamental Climate Data Record (FCDR) for the visible (VIS) channel of the Meteosat Visible and Infrared Imager (MVIRI), wi… This paper presents a new Fundamental Climate Data Record (FCDR) for the visible (VIS) channel of the Meteosat Visible and Infrared Imager (MVIRI), with pixel-level metrologically traceable uncertainties and error covariance estimates. MVIRI has flown onboard Meteosat First Generation (MFG) satellites between 1982 and 2017. It has served the weather forecasting community with measurements of “visible”, “infra-red” and “water vapour” radiance in near real-time. The precision of the pre-launch sensor spectral response function (SRF) characterisation, particularly of the visible band of this sensor type, improved considerably with time, resulting in higher quality radiances towards the end of the MFG program. Despite these improvements, the correction of the degradation of this sensor has remained a challenging task and previous studies have found the SRF degradation to be faster in the blue than in the near-infrared part of the spectrum. With these limitations, the dataset cannot be immediately applied in climate science. In order to provide a data record that is suited for climate studies, the Horizon 2020 project “FIDelity and Uncertainty in Climate-data records from Earth Observation” (FIDUCEO) conducted (1) a thorough metrological uncertainty analysis for each instrument, and (2) a recalibration using enhanced input data such as reconstructed SRFs. In this paper, we present the metrological analysis, the recalibration results and the resulting consolidated FCDR. In the course of this study we were able to trace-back the remaining uncertainties in the calibrated MVIRI reflectances to underlying effects that have distinct physical root-causes and spatial/temporal correlation patterns. SEVIRI and SCIAMACHY reflectances have been used for a validation of the harmonised dataset. The resulting new FCDR is publicly available for climate studies and for the production of climate data records (CDRs) spanning about 35 years. more
Author(s):
García-Haro, Francisco Javier; Camacho, Fernando; Martínez, Beatriz; Campos-Taberner, Manuel; Fuster, Beatriz; Sánchez-Zapero, Jorge; Gilabert, María Amparo
Publication title: Remote Sensing
2019
| Volume: 11 | Issue: 18
2019
Abstract:
The scientific community requires long-term data records with well-characterized uncertainty and suitable for modeling terrestrial ecosystems and ener… The scientific community requires long-term data records with well-characterized uncertainty and suitable for modeling terrestrial ecosystems and energy cycles at regional and global scales. This paper presents the methodology currently developed in EUMETSAT within its Satellite Application Facility for Land Surface Analysis (LSA SAF) to generate biophysical variables from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board MSG 1-4 (Meteosat 8-11) geostationary satellites. Using this methodology, the LSA SAF generates and disseminates at a time a suite of vegetation products, such as the leaf area index (LAI), the fraction of the photosynthetically active radiation absorbed by vegetation (FAPAR) and the fractional vegetation cover (FVC), for the whole Meteosat disk at two temporal frequencies, daily and 10-days. The FVC algorithm relies on a novel stochastic spectral mixture model which addresses the variability of soils and vegetation types using statistical distributions whereas the LAI and FAPAR algorithms use statistical relationships general enough for global applications. An overview of the LSA SAF SEVIRI/MSG vegetation products, including expert knowledge and quality assessment of its internal consistency is provided. The climate data record (CDR) is freely available in the LSA SAF, offering more than fifteen years (2004-present) of homogeneous time series required for climate and environmental applications. The high frequency and good temporal continuity of SEVIRI products addresses the needs of near-real-time users and are also suitable for long-term monitoring of land surface variables. The study also evaluates the potential of the SEVIRI/MSG vegetation products for environmental applications, spanning from accurate monitoring of vegetation cycles to resolving long-term changes of vegetation. more
Author(s):
Haensel, Stephanie; Brendel, Christoph; Haller, Michael; Kraehenmann, Stefan; Razafimaharo, Christene S.; Stanley, Kelly; Brienen, Susanne; Deutschlaender, Thomas; Rauthe, Monika; Walter, Andreas
Publication title: METEOROLOGISCHE ZEITSCHRIFT
2022
| Volume: 31 | Issue: 3
2022
Abstract:
Climate change and extreme weather events are an increasing challenge for society and the economy, including the transport sector. A sustainable and r… Climate change and extreme weather events are an increasing challenge for society and the economy, including the transport sector. A sustainable and resilient transportation system therefore requires information on the temporal and spatial pattern of risks induced by climate change and the assessment of resulting vulnerabilities. Such analyses in the past were usually made separately for each mode of transport based on different observational and climate model datasets and using different methodological approaches to analyse climatic changes and their impacts on the transport infrastructure. Within the research network “BMDV Network of Experts” an intermodal perspective is taken on transportation. Common observational and climate model datasets as well as a standardized analysis framework were coordinated and agreed upon to form the basis for comparable climate impact assessments for roads, railways and inland waterways. This manuscript introduces the climatological datasets and methodological approaches for the climate change and climate impact analysis used for the transportation sector and beyond. Selected results on the projected increases of extreme temperature and heavy precipitation are exemplarily presented in order to illustrate the need for developing climate change adaptation measures for the German inland transport system. more
Author(s):
Mozny, M.; Trnka, M.; Vlach, V.; Zalud, Z.; Cejka, T.; Hajkova, L.; Potopova, V.; Semenov, M.A.; Semeradova, D.; Büntgen, U.
Publication title: Nature Communications
2023
| Volume: 14 | Issue: 1
2023
Abstract:
A recent rise in the global brewery sector has increased the demand for high-quality, late summer hops. The effects of ongoing and predicted climate c… A recent rise in the global brewery sector has increased the demand for high-quality, late summer hops. The effects of ongoing and predicted climate change on the yield and aroma of hops, however, remain largely unknown. Here, we combine meteorological measurements and model projections to assess the climate sensitivity of the yield, alpha content and cone development of European hops between 1970 and 2050 CE, when temperature increases by 1.4 °C and precipitation decreases by 24 mm. Accounting for almost 90% of all hop-growing regions, our results from Germany, the Czech Republic and Slovenia show that hop ripening started approximately 20 days earlier, production declined by almost 0.2 t/ha/year, and the alpha content decreased by circa 0.6% when comparing data before and after 1994 CE. A predicted decline in hop yield and alpha content of 4–18% and 20–31% by 2050 CE, respectively, calls for immediate adaptation measures to stabilize an ever-growing global sector. © 2023, Springer Nature Limited. more
Author(s):
Mo, Shuying; Zhao, Pengguo; Zhao, Chuanfeng; Xiao, Hui; Wang, Yuting; Zhang, Peiwen; Wen, Xiaohang; Qiu, Shuang
Publication title: Theoretical and Applied Climatology
2024
| Volume: 155 | Issue: 5
2024
Abstract:
Based on satellite observation and reanalysis data, basic features of cloud water and precipitation and the dependence of precipitation efficiency (PE… Based on satellite observation and reanalysis data, basic features of cloud water and precipitation and the dependence of precipitation efficiency (PE) on environmental factors over the Sichuan Basin and adjacent regions are investigated. Results found that the spatiotemporal distribution characteristics of precipitation and cloud water over the Sichuan Basin and adjacent regions are consistent. The liquid water path (LWP) and ice water path (IWP) in the Sichuan Basin (SCB) are richer than the West Sichuan Plateau (WSP) and Yunnan-Guizhou Plateau (YGP), and the contribution of IWP to precipitation in Sichuan Basin and adjacent regions is greater than that of LWP. Furthermore, the results indicate that PE has the most significant dependence on the low-tropospheric relative humidity (RH) and the convective available potential energy (CAPE) over the Sichuan Basin and adjacent regions. Higher RH and CAPE contribute to a larger PE in the Sichuan Basin. The CAPE has a positive effect on the PE, which indicates that PE is directly affected by precipitation convection, mainly due to the special topography of the Sichuan Basin and adjacent regions, leading to frequent convective activities. The ratio of LWP to IWP (RLI) affects PE. The RLI decreases with the increase of IWP, leading to an increase in PE. RLI is negatively correlated with PE, which further indicates that ice water clouds have a more significant impact on PE over the Sichuan Basin and adjacent regions. Through this study, we can enhance our understanding of the formation processes, spatio-temporal structures, and evolutionary mechanisms of cloud precipitation in the Sichuan Basin and its adjacent areas. This is crucial for unraveling the dynamics of atmospheric water cycle, climate change processes, and optimizing the utilization efficiency of cloud water resources. more
Author(s):
García-Franco, J.L.; Lee, C.-Y.; Camargo, S.J.; Tippett, M.K.; Kim, D.; Molod, A.; Lim, Y.-K.
Publication title: Weather and Forecasting
2023
| Volume: 38 | Issue: 9
2023
Abstract:
This study evaluates the representation of tropical cyclone precipitation (TCP) in reforecasts from the Subseasonal to Seasonal (S2S) Prediction Proje… This study evaluates the representation of tropical cyclone precipitation (TCP) in reforecasts from the Subseasonal to Seasonal (S2S) Prediction Project. The global distribution of precipitation in S2S models shows relevant biases in the multimodel mean ensemble that are characterized by wet biases in total precipitation and TCP, except for the Atlantic. The TCP biases can contribute more than 50% of the total precipitation biases in basins such as the southern Indian Ocean and South Pacific. The magnitude and spatial pattern of these biases exhibit little variation with lead time. The origins of TCP biases can be attributed to biases in the frequency of tropical cyclone occurrence. The S2S models sim-ulate too few TCs in the Atlantic and western North Pacific and too many TCs in the Southern Hemisphere and eastern North Pacific. At the storm scale, the average peak precipitation near the storm center is lower in the models than observations due to a too high proportion of weak TCs. However, this bias is offset in some models by higher than observed precipitation rates at larger radii (300–500 km). An analysis of the mean TCP for each TC at each grid point reveals an overestimation of TCP rates, particularly in the near-equatorial Indian and western Pacific Oceans. These findings suggest that the simulation of TC occurrence and the storm-scale precipitation require better representation in order to reduce TCP biases and enhance the subseasonal prediction skill of mean and extreme total precipitation. © 2023 American Meteorological Society. more
Author(s):
Dorigo, Wouter; Dietrich, Stephan; Aires, Filipe; Brocca, Luca; Carter, Sarah; Cretaux, Jean-Francois; Dunkerley, David; Enomoto, Hiroyuki; Forsberg, Rene; Guntner, Andreas; Hegglin, Michaela, I; Hollmann, Rainer; Hurst, Dale F.; Johannessen, Johnny A.; Kummerow, Christian; Lee, Tong; Luojus, Kari; Looser, Ulrich; Miralles, Diego G.; Pellet, Victor; Recknagel, Thomas; Vargas, Claudia Ruz; Schneider, Udo; Schoeneich, Philippe; Schroeder, Marc; Tapper, Nigel; Vuglinsky, Valery; Wagner, Wolfgang; Yu, Lisan; Zappa, Luca; Zemp, Michael; Aich, Valentin
Publication title: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
2021
| Volume: 102 | Issue: 10
2021
Abstract:
Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-rela… Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines a suite of essential climate variables (ECVs), many related to the water cycle, required to systematically monitor Earth's climate system. Since long-term observations of these ECVs are derived from different observation techniques, platforms, instruments, and retrieval algorithms, they often lack the accuracy, completeness, and resolution, to consistently characterize water cycle variability at multiple spatial and temporal scales. Here, we review the capability of ground-based and remotely sensed observations of water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant land, atmosphere, and ocean water storages and the fluxes between them, including anthropogenic water use. Particularly, we assess how well they close on multiple temporal and spatial scales. On this basis, we discuss gaps in observation systems and formulate guidelines for future water cycle observation strategies. We conclude that, while long-term water cycle monitoring has greatly advanced in the past, many observational gaps still need to be overcome to close the water budget and enable a comprehensive and consistent assessment across scales. Trends in water cycle components can only be observed with great uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the water cycle requires improved model-data synthesis capabilities, particularly at regional to local scales. more