Dr Jussi Leinonen developed the competition’s top algorithm for predicting short-term weather
A custom-designed recurrent neural network was the key to the prize.
Last Updated
01 November 2023
Published on
02 November 2021
On 20 August, the Institute of Advanced Research in Artificial Intelligence announced EUMETSAT fellow Dr Jussi Leinonen as the first place winner of the Weather4cast Stage 1 award.
“It was pretty exciting,” said Leinonen, to find out he had won.
Leinonen’s winning algorithm used a recurrent neural network, a trainable system that draws on principles according to which the human nervous system operates. Rather than creating a traditional neural network to predict the weather, which would involve using a static set of rules, a recurrent neural network exploits the “memory” of the system by taking information from prior inputs to influence the current input and output. Recurrent neural networks are likely responsible for the drastic improvement in Google Translate over the years.
A EUMETSAT fellow at MeteoSwiss, the Federal Office of Meteorology and Climatology in Locarno, Switzerland since October 2020, Leinonen works on developing models to improve short-term thunderstorm prediction.
Leinonen’s work to improve the accuracy of weather forecasts has significant implications.
“Forecasts may be used to decide, for example, if an outdoor event should be held or cancelled, if flights should be rerouted to avoid bad weather, or if emergency services should prepare to respond to approaching extreme weather,” he said.
“Improving the accuracy of weather forecasts allows us to provide more reliable information, which in turn enables the decision makers to act more confidently.”
For winning both challenges, Leinonen was awarded a total cash prize of €10,000.